BACCALAURÉAT GÉNÉRAL

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2021

SCIENCES DE L'INGÉNIEUR

Durée de l'épreuve : 4 heures

Partie sciences de l'ingénieur : durée indicative de **3 h** - Coefficient : **12** Partie sciences physiques : durée indicative de **1 h** - Coefficient : **4**

L'usage de la calculatrice avec mode examen actif est autorisé. L'usage de la calculatrice sans mémoire, « type collège » est autorisé. Chacune des parties est traitée sur des copies séparées.

Dès que ce sujet vous est remis, assurez-vous qu'il est complet. Ce sujet comporte 37 pages numérotées de 1/37 à 37/37.

Le candidat traite les 2 parties en suivant les consignes contenues dans le sujet.

Partie 1 - Sciences de l'ingénieur	20 points		
Partie 2 - Sciences Physiques	20 points		

Partie 1 : les documents réponses DR1 à DR4 (pages 25 à 28) sont à rendre avec la copie.

Partie 2 : annexe à rendre avec la copie (page 37).

Partie 1 : Sciences de l'ingénieur

Constitution du sujet

- Sujet pages 3 à 24
- Documents réponses.....pages 25 à 28

La sous-partie 1 est à traiter obligatoirement par tous les candidats. Les candidats devront choisir de traiter seulement l'une des 2 sous parties suivantes :

- la sous-partie 2 (choix 1), pages 14 à 18
- la sous-partie 3 (choix 2), pages 19 à 24

Les documents réponses DR1 à DR4 (pages 25 à 28) sont à rendre avec la copie

Système de télé-échographie robotisé : **« MELODY »**

Mise en situation

Une échographie médicale est un acte permettant de contrôler le bon fonctionnement d'organes (ou d'observer la croissance d'un fœtus lors d'une échographie obstétricale, photo ci-contre) et le cas échéant de déceler certaines pathologies. Cette observation « non invasive » et sans danger pour le patient est réalisée à l'aide d'une sonde échographique ultrasonore manipulée par un médecin « au plus près » du patient.

Cette proximité nécessite une manipulation précise de la sonde par le praticien afin de procéder à une exploration la plus complète possible de l'organe observé (ou de la zone à observer).

Le système d'échographie télé-robotisée à distance MELODY permet à un médecin ou praticien « expert » de réaliser un diagnostic en temps réel et à distance d'un patient.

Ce système repose sur l'architecture innovante suivante :

SITE EXPERT

Un centre « expert » distant du lieu d'examen réel, avec un médecin « imageur » manipulant une « sonde fictive » similaire à une sonde réelle d'échographie, permet une prise de contrôle rapide et ergonomique à distance du robot.

L'ensemble est complété par un système de visioconférence permettant au médecin « imageur » distant de voir, de dialoguer et d'interagir avec son patient ainsi rassuré. En outre, l'ensemble des sites « experts » sont connectables aux sites « patients » existants, autorisant la mutualisation des diagnostics et la télé-expertise entre praticiens. À l'autre extrémité, un professionnel de santé ne connaissant pas l'échographie (médecin généraliste, infirmier, aidesoignant, etc.) accompagne le patient et assiste le médecin « imageur » en positionnant le robot équipé d'une sonde réelle échographique sur le patient.

Dès lors, et après une procédure spécifique de prise de repères (synchronisation entre la position de la sonde fictive et celle réelle du bras par rapport au positionnement du patient distant), ce robot va reproduire avec précision tous les mouvements initiés par le médecin « imageur ».

Le système d'échographie à distance MELODY permet donc de répondre à une double problématique grandissante : celle de la désertification médicale, et celle du manque de médecins experts en échographie contraignant les patients à des déplacements importants pouvant entraîner des surcoûts en frais médicaux.

Partant de ce constat, ce « robot échographique » permet d'atteindre n'importe quel patient à proximité de son domicile. Son adaptation à des territoires isolés, reculés, à des populations éloignées, n'ayant pas accès au diagnostic médical échographique, lui confère une grande attractivité.

À noter également qu'en cas de pandémies (maladies infectieuses à grande échelle géographique), ces praticiens ne sont pas exposés aux patients et peuvent ainsi poursuivre leurs diagnostics en toute sécurité.

La figure ci-dessous représente le diagramme SysML de « cas d'utilisation » du robot Melody. Ce diagramme montre les services et interactions fonctionnelles proposés par ce produit.

Figure 1 : diagramme des cas d'utilisation

Figure 2 : diagramme partiel des exigences

Sous-Partie 1

À traiter obligatoirement

Analyser la transmission d'information entre la sonde fictive et la sonde réelle

L'objectif de cette sous-partie est de vérifier la pertinence des informations émises par la sonde fictive lors de ses déplacements en regard de ceux attendus au niveau de la sonde réelle distante et de s'assurer de la robustesse des protocoles (I²C et UDP) de transmission des données associées.

La figure 2 représente le diagramme SysML partiel des « exigences ». Ce diagramme recense quelques contraintes techniques essentielles du produit MELODY.

Performances et efficacité de l'acte échographique réalisé

La qualité de l'examen échographique dépendra donc du positionnement des deux sondes dans l'espace, de la qualité de l'image et de l'expérience utilisateur de l'expert distant. Le positionnement des deux sondes et l'analyse de l'image ne peuvent être effectuées que par la même personne.

Analyse du fonctionnement de la sonde fictive dans son espace d'orientation (ψ , θ et φ)

La matrice d'orientation 3D permettant de calculer les commandes de positionnement du bras robotisé MELODY est basée sur le formalisme d'Euler. Cette méthode permet de quantifier l'orientation d'un solide (en l'occurrence la sonde fictive du médecin/praticien expert), par rapport à un système de coordonnées fixes, en utilisant trois angles spécifiques ou angles d'Euler (figure 3) obtenus lors de 3 rotations particulières successives.

- Ψ : angle de rotation autour de l'axe Oz₀ initial.
- θ : angle de rotation autour de l'axe Ox_i.
- ϕ : angle de rotation autour de l'axe Oz_n .

Figure 3 : $[x_0, y_0, z_0]$ – repère absolu. $[x_n, y_n, z_n]$ – rotation du repère.

Question 1.1 À partir de la présentation précédente, **donner** deux avantages (en les argumentant) de la solution d'échographie robotisée MELODY.

Cette matrice est élaborée par rapport aux changements de position de la sonde fictive du praticien. Cette sonde intègre exclusivement une unité de mesure inertielle (U1) composée pour chaque axe (Xn, Yn et Zn) d'un accéléromètre (pour la mesure de l'accélération en g), d'un gyromètre (pour la mesure de la vitesse angulaire en degré·s⁻¹), et enfin d'un magnétomètre (pour l'orientation « absolue » par rapport au champ magnétique terrestre en gauss). Les orientations spécifiques des axes Xn, Yn et Zn sont précisées sur les figures 4 et 5.

Ces 9 grandeurs, permettant de quantifier avec précision la nature du mouvement de la sonde fictive dans son espace tridimensionnel (appelé également « espace opérationnel »), sont délivrées par (U1) à la fois sous une forme « analogique », mais également « numérique » pour son exploitation directe par l'unité de traitement.

- Question 1.2 Justifier l'importance de l'exigence « contrainte d'étalonnage initiale du système (id = 1.4) », dans le diagramme SysML d'exigences figure 2. En déduire, parmi les trois groupes de grandeurs physiques acquises par la centrale inertielle, celle permettant l'obtention d'un repère absolu.
- Question 1.3 Lorsque la sonde fictive est maintenue, par le praticien, parfaitement verticale (donc dans l'axe Z₀), **préciser** quelles composantes axiales X_n et/ou Y_n et/ou Z_n subissent une accélération. **Donner** pour chacune les valeurs algébriques de ces accélérations.

Lors d'une manipulation de la sonde fictive par le praticien durant **un examen échographique réel à distance**, les relevés accélérométriques analogiques des axes X_n , Y_n et Z_n ont été enregistrés (figure 7). La position de départ **①** de ces relevés correspond à la situation où la sonde fictive est en position verticale.

Figure 7 : données accélérométriques (en m·s⁻²) en fonction du temps (en ms)

Question 1.4 À partir des éléments de la figure 6 et du relevé de la figure 7, compléter DR1 : tableau des positions de la sonde fictive.

- pour chaque phase, les valeurs numériques approximatives des accélérations Acc_Xn, Acc_Yn et Acc_Zn
- Ies positions de la sonde sur les phases 2, 4 et 5;
- l'intégralité du mouvement réalisé par la sonde (sur les 12 s visualisées) et l'intérêt d'une telle manipulation.

Le praticien stabilise désormais la position de la sonde fictive dans les nouvelles conditions de la figure 8 et 9. Cette position lui permet une analyse optimale de l'image échographique renvoyée. En outre, la composante Acc_X_n étant quasi nulle, il est possible d'adopter une représentation plane conformément à la figure 9. Dans cette position, la sonde ne subit que l'accélération de la pesanteur (-1 g).

- Question 1.5 Écrire la relation entre la valeur Acc_Zn, g et l'angle θ . Calculer la valeur de l'angle θ (déplacement angulaire de l'axe Zn autour de X₀) à l'instant t = 17,600 s.
- Question 1.6 D'après le diagramme des exigences figure 2, **indiquer** si la sonde réelle peut répondre à cette consigne angulaire. **Justifier** la réponse par des valeurs numériques.

La centrale inertielle (U1), présente dans la sonde fictive, convertit numériquement l'intégralité des 9 grandeurs analogiques captées et les communique à l'unité « contrôle expert » par une liaison série numérique l²C sur 2 fils (nommés SDA pour les données et SCK pour l'horloge de synchronisation) selon le protocole décrit figure 10.

Figure 10 : trame partielle l²C de communication « sonde fictive / unité expert » et valeurs hexadécimales des trois accélérations présentes.

La numérisation des grandeurs accélérométriques est la suivante (avec $g = 9,81 \text{ m} \cdot \text{s}^{-2}$) :

```
    Le mot « 0000 0001<sub>(2)</sub> » ⇔ 0,0039 g soit environ 0,0383 m.s<sup>-2</sup>
    Le mot « 0000 0010<sub>(2)</sub> » ⇔ 0,0078 g soit environ 0,0766 m.s<sup>-2</sup>
    etc.
```

Question 1.7 À partir des informations de la figure 10, **montrer** que les valeurs hexadécimales des trois accélérations présentes sur cette trame correspondent (en norme) à celles de la figure 8 (pour la position inclinée stable de la sonde fictive dans le plan).

Détailler cette explication par un calcul pour chaque accélération.

À partir des 9 grandeurs issues de la sonde fictive désormais numérisées, le bloc contrôle « expert » élabore avec précision les consignes d'orientation ψ , θ et ϕ représentant les changements de position de la sonde fictive dans son espace opérationnel.

Ces données sont envoyées vers le bras robotisé distant via une liaison internet incluant un protocole de transport de l'information « allégé » (afin d'optimiser la communication) nommé UDP. La « description » de cette trame système « expert vers patient » est donnée à la figure 11.

Octets composant la trame	Valeurs en hexadécimal de la trame « expert vers patient »
Octet n°1 à octet n°16	00 90 C2 F6 27 80 B8 6B 23 37 49 8A 08 00 45 00
Octet n°17 à 32	00 2E A4 D8 00 00 80 11 00 00 C0 A8 01 32 C0 A8
Octet n°33 à 48	01 0A 27 24 27 24 00 1A 83 B8 54 43 01 02 02 44
Octet n°49 à 60	00 01 DA 22 05 FF 00 3A 05 CE C2 4C

26 octets	4 octets	4 octets	8 octets	2 octets	3 octets	1 octet	4 octets	2 octets	2 octets	2 octets	2 octets
tes Ethernet V4 partielle	dresse IP source	dresse IP estination	Entête UDP	En-tête Trame	Irame	État bras obotisé	Datation interne	ψ	θ	φ	e détecteur
Entê et IF	A	Ϋ́ð			lde	· L –					Cod

Figure 11 : trame « expert (adresse IP source : 192.168.1.50) vers patient (adresse IP destinataire : 192.168.1.10) » avec identification des différents segments du protocole.

Question 1.8 À partir des informations de la figure 11 :

- retrouver la valeur hexadécimale de la consigne angulaire d'orientation φ présente dans cette trame ;
- sachant qu'elle est codée en dixième de degré, déterminer la valeur numérique réelle de cette consigne.

Le code détecteur d'erreur (ou checksum) généré sur les 2 derniers octets de la trame et permettant de détecter si les données ont subi une altération lors de la transmission, repose sur un calcul allant du début de l'en-tête Trame jusqu'au paramètre φ .

Il s'agit d'une somme arithmétique de mots de 16 bits (2 octets), dont le résultat final est complémenté (ou inversé) « bit à bit ». Cette somme est constituée par l'association des différents octets de la trame de la figure 11, regroupés 2 à 2 selon le principe et les explications de la figure 12 ci-dessous.

L'opération est ensuite réitérée sur les autres octets pour former les différents mots de 16 bits successifs qui seront additionnés entre eux. Une inversion finale « élément binaire par élément binaire » viendra conclure le traitement des données afin d'obtenir le code « détecteur d'erreur » résultant.

Figure 12 : principe de création du code détecteur d'erreur (ou checksum) présent en fin de trame « expert vers patient ».

Question 1.9À partir des informations de la figure 12 et des éléments de langage
spécifique du tableau figure 13, **compléter** sur le document réponse DR2
le programme python « checksum.py » partiel permettant de calculer le
code détecteur d'erreur (ou checksum) spécifique à cette partie de trame.

Syntaxe (ou écriture)	Résultat (ou traitement des données réalisé)
a b	« OU [] » binaire (bit à bit) entre a et b
a & b	« ET [&] » binaire (bit à bit) entre a et b
a << n	a est décalé [<<] « vers la gauche » de n bits
a >> n	a est décalé [>>] « vers la droite » de n bits
~ a	les bits de a sont [~] inversés
a + b	somme arithmétique [+] de a avec b

Figure 13 : éléments spécifiques de langage à utiliser pour le programme à compléter.

Sous-Partie 2 Choix 1

Analyse du bras robotisé et de son pied porteur.

L'objectif de cette sous-partie est d'analyser et de montrer la capacité du pied porteur du robot à équilibrer le poids de ce bras robotisé et ainsi de garantir un positionnement optimal de la sonde échographique, avec l'aide de l'opérateur, directement au contact de la surface de la peau du patient.

La partie opérative du robot MELODY est composée d'une structure de maintien accrochée au pied porteur et équipée de deux poignées permettant à l'opérateur de positionner la sonde sur la partie du corps concernée par l'échographie. Cette structure supporte un ensemble de bras pouvant pivoter autour de trois axes. Ces trois rotations permettent une exploration maximale sous la surface de la peau répondant à 100% des cas d'utilisation de l'échographie.

La géométrie des bras supérieurs, pivotant autour des axes 1 et 2, permet d'échographier une zone correspondant à un cône. Ce dernier sera de dimension variable fonction de la rotation autour de l'axe 2. La rotation autour de l'axe 3 permet la rotation de la sonde autour de son axe longitudinal.

La figure 14 permet d'observer la position des bras du robot pour une observation d'un cône échographique maximal.

Les trois rotations sont rendues possibles par trois motoréducteurs à courant continu entraînant des engrenages reliés par des courroies.

Le support permet de fixer toutes sortes de sondes réelles disponibles sur le marché. Ce support possède un degré de liberté en translation permettant un contact parfait de la sonde sur la peau du patient.

Figure 16 : positions diverses du robot MELODY en action.

Question 1.10 À l'aide du diagramme des exigences figure 2, **préciser** les exigences (en termes de normes ISO) concernant le matériau de la pièce 1 (Base) en contact avec la peau du patient (voir figure 18). La pièce 2 (Sonde réelle) est soumise aux mêmes exigences mais n'est pas fournie avec le robot MELODY.

À l'aide du tableau du statut de biocompatibilité des matériaux ci-après, **proposer** un matériau pour chaque élément – la base et la sonde réelle - en adéquation avec les normes ISO imposées, ainsi que leur couleur.

STATUT DE BIOCOMPATIBILITÉ (USP AND ISO 10993) DES MATÉRIAUX QUADRANT LSG

Un programme complet de test de type de biocompatibilité a été mené par une organisation de test indépendante, de renommée internationale et accréditée sur les matériaux Quadrant LSG afin de vérifier leur conformité aux exigences de la Pharmacopée des États-Unis (USP) et de l'ISO 10993-1 pour les tests de biocompatibilité des matériaux.

TESTS (1) MATERIAUX	1 - Cytotoxicité ISO 10993-5 et USP 87	2 – Sensibilité au matériau ISO 10993-10	3 – Réaction intra-cutanée ISO 10993-10 et USP 88	4 - Toxicité systémique aiguë ISO 10993-11 et USP 88	5 - Test d'implantation USP 88	6 - Compatibilité avec le sang humain ISO 10993-4	7 – USP - Test physico-chimique pour les plastiques USP 661	8 – USP Class VI (conclusion des tests 3, 4 et 5)
Ketron" CLASSIX™ LSG PEEK blanc	1	1	1	1	1	1	1	1
Ketron® LSG CA30 PEEK noir	<	~	<	~	~	~	~	~
Ketron® LSG GF30 PEEK bleu	~	1	~	1	1	1	~	1
Ketron® LSG PEEK gris & noir		~	~	~	~	~	~	~
Quadrant® R5100 LSG PPSU noir	~	~	~	~	~	1	~	1
Quadrant® R5100 LSG PPSU gris		NT		7	NT	NT	7	NT
NT15 (ivoire)	2		2	~			~	
Quadrant* R5500 LSG PPSU BN1164	~	NT	NT	NT	NT	NT	~	NT
Duratron® LSG PEI naturel	2	~	1	~	~	1	~	~
Acetron LSG naturel &black	~	NT	NT	NT	NT	NT	1	NT
Proteus® H LSG naturel (blanc)	>	NT	1	✓	√	NT	NT	✓
Proteus® LSG HS PP blanc & noir	~	NT	NT	NT	NT	NT	~	NT
<u>Légende</u> : ✓ ⇔ Ce test a été effectué et le matériau a réussi le test . NT ⇔ Non testé, donc inutilisable en l'état.								

Figure 17 : biocompatibilité des matériaux

Lors de l'examen, le robot est maintenu immobile en contact, au niveau de sa base, avec la peau du patient par l'opérateur à l'aide des deux poignées latérales (figure 18).

Figure 19 : coupe verticale de la base et de la sonde réelle au repos (à gauche) et en position au contact de la peau du patient (à droite)

Question 1.11 À l'aide du diagramme SysML des exigences figure 2 :

- extraire la valeur de la force ponctuelle Fs/c maximale que la sonde réelle peut appliquer sur le corps du patient ;
- en déduire la raideur (k) en N·cm⁻¹ du ressort placé au-dessus de la sonde réelle.

La suite de l'étude porte sur l'analyse du pied porteur du robot Melody (figure 20). On souhaite vérifier le basculement de ce pied porteur dans le cas le plus défavorable qui correspond à la situation où le bras est complètement déployé.

Question 1.12 **Justifier** que la situation avec le bras déployé ait été retenue comme cas le plus défavorable.

Données :

- > masse du pied porteur $m_1 = 60 \text{ kg}$,
- Ia masse du robot Melody sera notée m2,
- G1 : centre de gravité du pied porteur avec le bras déployé ; G2 : centre de gravité du robot Melody,
- > on prend l'accélération de la pesanteur $g = 9,81 \text{ m} \cdot \text{s}^{-2}$.

Figure 20 : Pied porteur du robot Melody.

Avec l'hypothèse d'un modèle plan, on considère sur la figure 21 l'ensemble pied porteur + robot Melody. Le point A représente le contact ponctuel des roues situées à droite du pied et le point B le contact ponctuel des deux roues situées à gauche du pied.

Question 1.13En isolant le pied porteur et le robot Melody, établir un bilan des actions
mécaniques et les dessiner sur le document réponse DR3. Le calcul des
réactions d'appui n'est pas demandé.

Question 1.14 Au repos, **préciser** le point de basculement du pied porteur.

Question 1.15 En appliquant le Principe Fondamental de la Statique au point A **déterminer** la norme de la réaction d'appui au point B sachant que la masse du robot Melody est de 4 kg.

Sachant que la limite de basculement correspond à une réaction d'appui au point B nulle, **conclure** quant au risque de basculement de l'ensemble pied « porteur + robot ».

Sous-partie 3

Choix 2

Analyse du fonctionnement du bras robotisé dans son espace « articulaire ».

L'objectif de cette sous-partie est de valider plus spécifiquement les performances du bras n°1 sur le respect des critères de vitesse, d'accélération, ainsi que sur le choix de sa motorisation. On s'attachera également à montrer les qualités de l'asservissement associé à ce bras en accord avec le cahier des charges (diagramme des exigences).

Question 1.16 DR4 : chaîne de puissance.
À partir du diagramme de définition de blocs internes de la figure 23, compléter le document réponse DR4 : > en indiquant précisément la nature des puissances repérées ●, e et € ;
> en nommant les éléments structurels ● et € réalisant les deux blocs fonctionnels « convertir » et « transmettre » ;

en précisant la nature de la valeur ajoutée
en sortie du système.

Figure 23 : chaîne de puissance du mécanisme de déplacement de la sonde réelle

Le déplacement de précession figure 24 consiste en une rotation d'un peu plus d'un demitour autour de l'axe Z vertical. Cette opération (initiée à distance par la sonde fictive) permet le balayage complet d'une zone à analyser.

Figure 24 :

vue de dessus du robot Melody lors d'un déplacement de précession (rotation autour de l'axe 1).

Un point de repère P placé sur le support de la sonde réelle a permis d'obtenir les caractéristiques de sa trajectoire circulaire.

On peut remarquer sur la figure 25, qu'une loi de commande en vitesse de type « trapézoïdal » (en 3 phases) a été implantée afin d'assurer un démarrage et une fin de mouvement progressifs.

Question 1.17 **Caractériser** les natures des mouvements de la sonde réelle pendant la phase 1 (0 < t < 0,334 s), la phase 2 (0,334 s < t < 1,5 s) et la phase 3 (1,5 s < t < 2 s).

Les caractéristiques du mouvement du point de repère P permettent de déterminer les caractéristiques du mouvement de rotation de la sonde réelle afin de déterminer le couple nécessaire en sortie du motoréducteur du bras 1.

Question 1.18 À partir de la vitesse V_P du point P, pendant la phase 2 et de sa position :

- calculer la vitesse angulaire de rotation maximale (ω_max en degré·s⁻¹), ainsi que la fréquence de rotation maximale (N_max en tr·min⁻¹) de la sonde réelle ;
- > déterminer également la valeur maximale de l'accélération angulaire αs au cours de la phase 1.

On rappelle, qu'en négligeant les frottements sec ou fluide, le couple en sortie du motoréducteur est déterminé par la relation : $C_m = J_G \times \alpha_s$ avec :

- C_m : couple du motoréducteur en N·m ;
- > J_G : moment d'inertie ramené sur l'axe du motoréducteur ;
- > α_s : accélération angulaire en rad·s⁻².

On donne : $J_G = 0,356 \text{ kg} \cdot \text{m}^2$.

Question 1.19 **Déterminer** la valeur du couple C_m en sortie du motoréducteur nécessaire lors de la phase 1.

Choisir, en la justifiant, la référence du motoréducteur qui vous semble la mieux adaptée parmi les trois caractéristiques figure 26.

Figure 26 : caractéristiques couple-vitesse de motoréducteurs

La précision de positionnement angulaire de la sonde réelle lors de ses déplacements est rendue possible par la présence de capteurs spécifiques figure 27.

L'axe 1 est équipé d'un double contrôle de position, à la fois « absolue » en sortie de mécanisme et « relatif » (incrémental) directement intégré au motoréducteur (dont le rapport de transmission r est de 1/100). À noter

que la courroie crantée que l'on aperçoit entre le motoréducteur et l'axe 1 assure, avec Code souplesse, une transmission directe sans réduction de vitesse.

e le Codeur « absolu » Codeur « incrémental »

Figure 27 : visuel du mécanisme de déplacement de l'axe 1 et de ses codeurs de position, absolu et incrémental, associés.

Le capteur de position relatif incrémental est monté sur l'arbre moteur. Il délivre 1024 impulsions par tour moteur sur le signal A, et également 1024 impulsions par tour moteur sur le signal B (décalé de plus ou moins un quart de période par rapport à A en fonction du sens de rotation moteur, voir figure 28).

Figure 28 : chronogramme des signaux de sortie du codeur incrémental

Question 1.20 Sachant que l'électronique de la partie « traitement » comptabilise à la fois les fronts montants et les fronts descendants des deux signaux A et B :

- A l'aide la figure 28 calculer le nombre de fronts sur une période, en déduire la plus petite valeur angulaire β_{min} détectable au niveau de l'axe de sortie du moteur avant réduction de vitesse ;
- calculer, en prenant en compte le rapport de transmission r, la valeur angulaire théorique βs_{min} détectable en sortie de mécanisme ;

conclure en comparaison de la précision de positionnement minimale évoquée dans le diagramme des exigences figure 2.

Afin de valider les choix précédents et les critères de performances du diagramme des exigences de la page 6, un modèle multi-physique (figure 29) est élaborée afin d'appréhender le comportement dynamique du bras 1.

Figure 29 : modèle multi-physique de l'asservissement en vitesse du bras 1.

Question 1.21 **Justifier** les rôles des blocs « PWM Generation » et « Four-Quadrant Chopper1 » (anglicismes respectifs de « génération d'une modulation en largeur d'impulsion, autre acronyme MLI » et de « pont en H ») dans la structure multi-physique de la figure 29.

La sollicitation, à un échelon de vitesse, du modèle multi-physique précédent se traduit par la réponse de la figure 30.

Question 1.22 Á l'aide du diagramme des exigences figure 2, recenser deux critères

permettant d'évaluer la qualité de l'asservissement réalisé dans le cadre du contrôle de vitesse du bras 1. Pour les deux critères retenus, **valider** les performances simulées du produit au regard des exigences.

Document réponse DR1

« Mouvement réalisé par la sonde fictive »

Faisceau simulant les ultrasons émis par la sonde réelle

Phase	Position de la sonde fictive
0	Sonde : « verticale »
soit à t = 15,5 s	Acc_Xn \approx 0 m·s ⁻² ; Acc_Yn \approx - 0,8 m·s ⁻² ; Acc_Zn \approx - 1 g
2	Sonde :
soit à t = 19 s	Acc_Xn \approx ; Acc_Yn \approx ; Acc_Zn \approx
B	Sonde : « verticale »
soit à t = 21 s	Acc_Xn \approx 0 m·s ⁻² ; Acc_Yn \approx - 0,4 m·s ⁻² ; Acc_Zn \approx - 1 g
4	Sonde :
soit à t = 23 s	Acc_Xn \approx ; Acc_Yn \approx ; Acc_Zn \approx
G	Sonde :
soit à t = 26 s	Acc_Xn \approx ; Acc_Yn \approx ; Acc_Zn \approx
Description et intérêt du mouvement final (association des	
phases 0 , 2 , 6 , 4 et 6)	
fictivo du praticion	
durant un examen en	
conditions réelles	
(présence d'un patient distant).	

Les zones à compléter sont identifiées par les pointillés (....)

```
# Programme "checksum.py"
```

```
while i < ..... :
    val=(liste[i] << ....) .... liste[i+....]
    checksum = checksum + .....
i=i+.....
checksum=(..... checksum & 0x0fff)
# & 0x0ffff pour l'écriture du résultat final
# sur un format de 16 bits
print ("Checksum sur 16 bits :", hex(checksum))
# Affichage du code détecteur d'erreur en hexadécimal</pre>
```

Établir le bilan des actions mécaniques:

Nom	Point d'application	Sens	Direction	Norme

0):	
0) :	
€):	
4):	
6):	
6	0 :	

Partie 2 : Sciences physiques

Vous traiterez 2 exercices au choix parmi les 3 proposés.

Vous indiquerez sur votre copie <u>les 2 exercices choisis</u> : exercice A ou exercice B ou exercice C.

Exe	ercices	Mots-clés
A.	Étude de la panne d'un drone en plein vol	Mouvement dans un champ de pesanteur uniforme ; aspect énergétique.
B.	Bouilloire électrique	Premier principe, bilan d'énergie, variation d'énergie interne.
C.	Niveaux d'intensité sonore	Niveau d'intensité sonore ; atténuation géométrique.

EXERCICE A – Étude de la panne d'un drone en plein vol

Mots-clés : mouvement dans un champ de pesanteur uniforme ; aspect énergétique.

Depuis quelques années, les spectacles de drones remplacent peu à peu les feux d'artifice classiques. Lors d'une représentation, un drone est en mouvement rectiligne uniforme à l'altitude constante h = 100 m. Celui-ci se déplace alors à la vitesse maximale autorisée dans ce contexte. On note $\overrightarrow{v_0} = v_0 \overrightarrow{u_x}$ la vitesse du drone.

À l'instant t = 0 s, à la suite d'un problème technique, les moteurs s'arrêtent alors que le drone vole en direction du public.

On considère alors que le drone est en chute libre. La situation est modélisée au moyen du schéma et du graphique ci-dessous.

L'exercice porte sur l'étude du mouvement du drone.

Caractéristiques du drone

Туре	Quadricoptère avec hélices couvertes
Taille	384 mm × 384 mm × 93 mm
Poids maximal au décollage	280 g
Temps de vol	jusqu'à 20 minutes
Vitesse maximale	3,0 m⋅s ⁻¹

Simulation de l'évolution temporelle de différentes énergies associées au drone dans le cadre du modèle de la chute libre

Donnée :

Accélération du champ de pesanteur terrestre : $g = 9.81 \text{ m} \cdot \text{s}^{-2}$.

- 1. Définir le modèle de la « chute libre ».
- 2. Établir la direction et le sens du vecteur accélération \vec{a} du drone au cours de sa chute.
- 3. Établir les équations horaires du mouvement du drone lors de la chute.
- 4. Montrer que la position horizontale x_P du point d'impact P avec le sol a pour expression : $x_P = v_0 \sqrt{\frac{2\hbar}{g}}$. Calculer la valeur de x_P et commenter ce résultat.

5. Déterminer l'altitude minimale au-delà de laquelle le drone pourrait atteindre le public, celui-ci étant toujours placé à 30 mètres de la verticale du drone à t = 0. Commenter.

On cherche désormais à étudier la vitesse de chute.

- 6. En utilisant le théorème de l'énergie cinétique appliqué au drone entre l'instant où les moteurs s'arrêtent et le moment où il va toucher le sol, déterminer l'expression de sa vitesse v_P au moment de l'impact en fonction de v_0 , g et h.
- 7. Associer chaque courbe du document « évolution temporelle des différentes énergies associées au drone » au type d'énergie correspondant. Justifier.

Les courbes sont des simulations établies dans le cadre du modèle de la chute libre : elles ne rendent pas compte des mesures effectuées.

- 8. Déterminer le phénomène qui n'a pas été pris en compte pour ces simulations.
- 9. Dans le cas réel, tracer sur le document-réponse 1 en **ANNEXE à rendre avec la copie** la courbe modifiée représentant l'évolution de l'énergie mécanique en fonction du temps. Même question pour la courbe représentant l'énergie cinétique.

EXERCICE B – Analyse énergétique d'une bouilloire

Mots-clés : premier principe ; bilan d'énergie ; variation d'énergie interne.

La résistance d'une bouilloire convertit l'énergie électrique en énergie thermique et transfère cette énergie à l'eau qu'elle contient. Toutes les bouilloires sont munies d'un dispositif permettant de couper l'alimentation une fois que l'eau est à ébullition.

Le but de l'exercice est d'étudier les pertes d'énergie lorsque l'appareil porte à ébullition une certaine masse d'eau.

Caractéristiques de la bouilloire :

- puissance électrique : 2,0 kW sous 230 V;
- contenance : 1,7 L;
- surface latérale : $S = 0,080 m^2$;
- diamètre de la base : 15 cm ;
- diamètre du couvercle : 12,5 cm ;
- masse volumique de l'eau : $\rho = 1.0 \text{ kg} \cdot \text{L}^{-1}$.

On met à chauffer dans la bouilloire 1,0 litre d'eau de capacité thermique massique $c_{eau} = 4,18 \times 10^3 \text{ J} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$. On obtient le graphique ci-dessous.

Évolution de la température de l'eau dans la bouilloire au cours du temps

- 1. Déterminer la valeur de la variation d'énergie interne du système constitué par 1 litre d'eau lorsque la température de celui-ci varie de $T_1 = 20$ °C à $T_2 = 90$ °C.
- 2. Déterminer la valeur de l'énergie électrique reçue par la résistance de la bouilloire pendant la durée de chauffe du système de $t_1 = 30$ s à $t_2 = 190$ s.

Le vase de la bouilloire est en acier inoxydable. Sa capacité thermique vaut $C_{vase} = 3.0 \times 10^2 \text{ J} \cdot \text{K}^{-1}$. On suppose qu'à chaque instant la température du vase de la bouilloire est égale à celle de l'eau.

- 3. Calculer la valeur de la variation d'énergie interne du vase de la bouilloire lorsque la température de celui-ci varie de $T_1 = 20$ °C à $T_2 = 90$ °C. Commenter au regard des questions précédentes.
- 4. En supposant que toute l'énergie thermique cédée par la résistance de la bouilloire est transférée au système {eau}, déterminer la durée nécessaire pour augmenter la température du système {eau} de $T_1 = 20$ °C à $T_2 = 90$ °C.

Représenter l'allure de l'évolution de la température du système {eau} dans le cas idéalisé décrit ci-dessus sur le document-réponse 2 de **l'ANNEXE à rendre avec la copie**. On limitera le tracé à des températures inférieures à 90 °C.

EXERCICE C – Niveaux d'intensité sonore

Mots-clés : niveau d'intensité sonore ; atténuation géométrique.

Les casques audios permettent tous une réduction des bruits ambiants de façon passive de par la forme et la constitution des écouteurs. Cependant, les technologies actuelles permettent un contrôle des sons extérieurs plus poussé.

Le constructeur annonce que son casque antibruit est efficace même dans les environnements exigeants tels que l'avion ou le train.

Niveaux d'intensité sonore dans le casque avec réduction passive ou réduction active

D'après <u>https://www.lesnumeriques.com/casque-nomade/sony-wh-1000xm3-</u> p45685/test.html

Dans ce graphique, on représente le niveau d'intensité sonore d'un bruit de référence ayant un spectre large que l'on compare avec des mesures de niveau d'intensité sonore prises dans l'oreillette du casque selon les deux modes de fonctionnement prévus : la réduction passive du bruit et la réduction active (voir schéma ci-dessous).

Profil sonore du bruit ambiant dans un RER, niveau d'intensité sonore moyen de 80 dB

D'après des mesures expérimentales réalisées avec Phyphox (Phyphox.org)

Données

- intensité sonore de référence : $I_0 = 1.0 \times 10^{-12} \text{ W} \cdot \text{m}^{-2}$;
- lien entre l'intensité sonore *I* et la distance *r* avec la source du son, dont on suppose qu'elle émet de manière identique dans toutes les directions :

$$I = \frac{P}{4\pi r^2}$$

avec P la puissance sonore en watt et r la distance à la source en mètre ;

– quelques exemples de valeurs de niveaux d'intensité sonore *L* :

Situation	Forêt calme	Bibliothèque	Conversation	Seuil de danger	Concert
L	20 dB	40 dB	60 dB	90 dB	110 dB

Pour mettre en évidence l'atténuation passive du casque, on considère une voiture qui klaxonne. À $r_1 = 5,0$ m du véhicule, là où se trouve un observateur, le son produit a une intensité sonore $I_1 = 1,0 \times 10^{-3}$ W.m⁻².

1. Calculer la valeur du niveau d'intensité sonore L_1 du son reçu par la personne et qualifier ce son.

2. Après avoir rappelé la définition de l'atténuation A en décibel, montrer que : $A = 10 \log \left(\frac{I_1}{I_1'} \right)$ avec I_1' l'intensité sonore du son atténué.

Déterminer l'intensité sonore I'_1 entendue à travers le casque si l'atténuation est de 15 dB.

3. Déterminer à quelle distance de la source sonore on doit se situer pour obtenir la même atténuation sans casque. Commenter.

Dans les questions suivantes, on s'intéresse aux effets de la réduction active de bruit.

- 4. À l'aide des données, identifier le domaine de fréquences pour lequel la réduction passive de bruit est efficace et le domaine de fréquences pour lequel la réduction active de bruit est efficace.
- 5. En utilisant l'ensemble des données, expliquer si la promesse du constructeur à propos de l'efficacité de son casque dans les transports est respectée et si la technologie de réduction active de bruit est nécessaire.

PAGE BLANCHE LAISSÉE

INTENTIONNELLEMENT

ANNEXE À RENDRE AVEC LA COPIE

Document-réponse 1 : EXERCICE A, question 9.

Évolution temporelle de différentes énergies associées au drone dans le cadre du modèle de la chute libre

Document-réponse 2 : EXERCICE B, question 4.

Évolution de la température de l'eau dans la bouilloire au cours du temps

